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1. INTRODUCTION 

Heat pipes have been widely used as heat transmission 
devices in the last few d.ecades due to their abilities of trans- 
porting heat at high rate over considerable distance with 
small temperature drop [1, 2]. They are found particularly 
useful as cooling means for modern electronic devices which 
have been manufactuIed for high performance and high 
degree of integration. Inside a heat pipe, working fluid is 
evaporated at the heat input section or zones, and condensed 
at the condensation section. A sufficient capillary pressure is 
needed to balance the gravitational pressure and the pressure 
losses in both vapor and liquid phases. In general, the cal- 
culation of  pressure loss in the liquid phase is usually done 
by using Darcy's equation, and the solution can easily be 
obtained if both heater and condenser cover the whole evap- 
oration and condensation sections. There are not many solu- 
tions available for the cases of  localized heating or cooling. 
Under these situations, the flow patters of liquid in the wick 
structure are no longer ,3ne-dimensional (1 D) due to the non- 
uniform heat flux caused by discrete heaters or condensers, 
and the pressure distriE,ution are usually difficult to be deter- 
mined. Fo~ a circular heat pipe, Schmalhofer and Faghri 
[3] considered the case of  partially circumferentially-heated 
condition and presented an approximate method to calculate 
the effective length. Sun et al. [4] applied a similar approach 
and presented the results for a fiat plate heat pipe, in which 
the heater is not comple.tely covered in the whole evaporation 
section. Flat plate heat pipes have been proved to be useful 
for cooling electronic devices [5, 6]. The heat sources applied 
on the surface of  the heat pipes may be discrete. It is worth- 
while having some methods to calculate the pressure dis- 
tribution of  the liquid under this condition, which motivated 
the work presented in this paper. 

An analytical method is developed in the present study to 
calculate the liquid flow field with localized heating 
condition. It solves bc,th the pressure and the velocity dis- 
tributions of  the liquid over the whole pipe, thus allowing 
determination of the pressure gradient and examination of 
the effect of  the location and the geometry of the heater 
on the heat pipe performance. In the analytical model, the 
working fluid is assumed to be evaporated uniformly over 
the heat input zone and also to be condensed uniformly over 
the condensation section. The method is applied here to a 
fiat plate heat pipe, cn which the heater is a rectangular 
patch and the rest of  the pipe is all considered to be the 
condensation section. In practical applications this may be 
corresponding to an electronic chip being directly attached 
to the surface of  a fiat plate heat pipe and the rest of  the pipe 
simply exposed to the ambient to dissipate the heat absorbed 

from the chip. The adiabatic section, which is normally avail- 
able in a heat pipe, has been omitted in the present study, 
but this section can easily be included in the analysis by 
modifying a source distribution function. 

2. FORMULATION A N D  SOLUTION 

It is assumed that the flat plate heat pipe is of  a 2a x b 
rectangular dimension and is in an x-y plane, as illustrated 
in Fig. 1. The heat input zone on the plate is a 2c × ( h -  d) 
rectangle which occupies an area of  - c  ~<x ~< c and 
d ~< y ~< h, and is shown by the shaded area in Fig. l(a). 
The working fluid in the pipe is assumed to be evaporated 
uniformly over the heat input area at an evaporation rate ct- 
(kg s -~ per unit area), while over the rest of  the plate the 
fluid is uniformly condensed into the plate at a rate ct + (kg 
s - '  per unit area). Since the arrangement of the heat pipe 
and the heat input area is symmetric about the y-axis in our 
study, only half of the plate (x > 0) will be considered, and 
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Fig. 1. (a) A schematic illustration of  the flat plate heat 
pipe under local heating. (b) Three typical geometries and 

locations of the heat zone on the heat pipe. 
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NOMENCLATURE 

h a l f  l eng th  o f  the  h e a t  p ipe  [m] 
F o u r i e r  coefficients  o f p  
w i d t h  o f  the  hea t  p ipe  [m] 
h a l f  l eng th  o f  the  hea t i ng  zone  [m] 
y - c o o r d i n a t e s  o f  the  h e a t i n g  zone  [m] 
y - c o o r d i n a t e s  o f  the  hea t i ng  zone  [m] 

d i s t r i b u t i o n  f u n c t i o n  o f  the  
c o n d e n s a t i o n  ra te  
F o u r i e r  coefficients o f f ( x ,  y) 
wick p e r m eab i l i t y  
to ta l  mass  flow ra te  [kg s-~] 
effective l eng th  [m] 
p ressure  [N m -z] 
re ference  p ressu re  [N m -2] 
n o n - d i m e n s i o n a l  pressure ,  

= (p--PreO/(flab) 
m i n i m a l  p ressu re  
p ressure  difference,  = P - P m i n  

m a x i m u m  pressu re  dif ference 
geome t r i c  p a r a m e t e r ,  = e l ( h -  d) 
a rea  o f  the  h e a t i n g  zone ,  = c ( h -  d) 

u veloci ty  c o m p o n e n t  in  x -d i r ec t i on  
[m s - ' ]  

v veloci ty  c o m p o n e n t  in y -d i r ec t i on  
[ m s  '] 

U = up/(~z+b) 
V = vp/(a+b)  
X = x /a  
Y = y/b.  

G r e e k  symbo l s  
u overa l l  c o n d e n s a t i o n  ra te  o n  the  h e a t  

p ipe  [kg s l m-2]  

u+ c o n d e n s a t i o n  ra te  [kg s 1 m-Z] 

c~- e v a p o r a t i o n  ra te  [kg s - ]  m ~] 

fl = p~+ /pK 
r/ r a t io  o f  the  c o n d e n s a t i o n  a r ea  to the  

h e a t i n g  a rea  
p m a s s  o f  the  fluid pe r  un i t  a rea  o f  the  

flate p la t e  h e a t  p ipe  [kg m 2] 
# viscosi ty  o f  the  fluid [kg s -  1 m -  1]. 

three typical locations and configurations of the heating area 
shown in Fig. 1 (b) will be discussed later on. The total heat 
input can be calculated by the known area and the heat flux. 

In the area of 0 ~< x ~< a and 0 ~< y ~< b, the mass con- 
servation of the fluid requires that 

so that 

where 

c~ + [ a b - c ( h - d ) ]  = ot c ( h - d )  (1) 

c~ =c~+ I a ~ - l ] = c ~ + r /  (2) 

ab 
1 (3) 

~l - c ( h - d )  

which is the ratio of the condensation area to the evaporation 
area. The fluid evaporated from the heat input area may 
be considered to be condensed into the area at a negative 
condensation rate -c~-,  as such, the condensation rate over 
the whole plate can be written as 

c~ = or+f (x, y) (4a) 

with 

1 c <~ x <~ a O <~ y <~ b 

f ( x , y ) = J - - q  O<~x<~c d<~y<~h 

(1 O<~x<~a O<~y<.d  or h < . y < ~ b  

(4b) 

If  adiabatic sections are to be inserted into the plate, the 
source distribution function f ( x ,  y) will be modified to be 
equal to zero at the adiabatic area. The plate is horizontally 
positioned and the gravity force on the fluid is assumed 
negligible. The fluid is in a porous material and it follows 
Darcy's law. The velocity normal to the vapor-l iquid inter- 
face is assumed to be zero and the governing equations for 
the fluid can therefore be expressed by 

K @  K @  
u v - (5a) 

/2 ~x # ~y 

F (Sb) 
~x ~y p 

in which p is the pressure of the fluid, u and v are the flow 
velocities in x and y directions, respectively, K is the per- 
meability of the wick structures, p is viscosity, p is the mass 
of the fluid per unit area of the plate, and c~ is the con- 
densation rate in equation (4a). The combination of equa- 
tions (5a) and (5b) yields an equation for the pressure p 

c~2P + c~2P = - fl f(x,  y) 
~x ~ c3y 2 

(6) 

where fl = pa+/pK. The boundary conditions for the pres- 
sure are 

~XXx=o =~Xx=a=~yyy=o =~yyy=b =0 (7) 

according to which the pressure can generally be expressed 
in a Fourier 's series : 

p flab L ~ ~mncosmT'~X nny : c o s  - -  
m=On=O a b 

{ ~  A.,o cos + 2 .  Ao. cos = P,~r + t ab  mnx & nny 
m= a n= 

+,.=l  .= i ~ ~ A m " c ° s m ~ X c ° s ~ - }  " a  (8) 

In equation (8) Pref is the reference pressure of the fluid, the 
coefficients Am. will be determined by substituting equation 
(8) into equation (6). This gives 
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mn 2 mltx ab~ ~ A , .o ( - - I  cos + ~ /mr\ 2 nny 
Ira=, \ a  J a .= A o . t ~  ) cos ff 

+ ~ ~ [ - [mrc \  2 [mr'~ 2] mr~x  mcy] 
o,=, 7-, A-Lt-a)  jcos o cosT;  

= f(x ,  y). 

The source distribution function f (x ,y)  at the right-hand 
side of  equation (9) can be expanded in the same Fourier's 
series, i.e. 

mxx ~ nxy 
y x,y) =   oCOS a +  onCOS - 

~ mnx nny 
+ F~.cos a c o s ~ -  (10) 

m ~ l n = l  

where 

F~o (h-d)a(l+q)sinmX--fc 
mn a 

cb I- nnh nrcd-] 
Fo. = -- ~ (1 + , ) / s in~-L - sin-'~-/d 

ab . mTtc[-, mth . nndq 
Fm~ ( m ~ n ~ )  (1 + t / ) sm-~-Ls ln  ~ - -  s m - ~ -  ] . (l lc) 

By substituting equation (10) into (9) and comparing the 
coefficients at both sides, the coefficients Am, are found as 

Amo = -  
2 

F~o 
b2(mn) 2 

Ao. = - -  
2 

Fo. 
aZ(nn) 2 

and 

4 
A , . . =  F,... 

b 2 (mTz) 2 + a 2 (nx) 2 

By setting 

p P--Pref U = - - u  V = v X = x/a 
flab e+ b/p e+ b/p 

and Y = y/b 

we have 

P = A,,, o :os (mnX) + ~ Ao. cos (nze Y) 
m = l  n = l  

+ 2 
m = l n = l  

~P 
)" A,.o(mr 0 sin (rmzX) 

OX ~=~ 

+ ~ ~ A,~,(mrOsin(mrcX)cos(nrrY ) (14) 
m = l  n = , l  

+ m=,no~, ~ f" Amn(nrOc°s(mgX)sin(mcY)}" (15) 

The pressure field and the velocity distribution can be cal- 
culated by the above three equations. Results will be pre- 
sented in the next section. 

3. RESULTS AND DISCUSSION 

The pressure and the flow velocities are evaluated in this 
(9) section to show the effect of location and geometry of the 

heat input area on the distribution of the pressure and the 
pressure drop across the plate. The infinite series are trunc- 
ated at m = n = 40 in the numerical computation. In fol- 
lowing discussion the geometry of  the plate is set as a = b, 
and the area of heat input zone is fixed at c(h-d) = ab/8. 
The dimensions and the geometry of the heat input patch 
are initially fixed at c = a/4, h - d  = b/2 and c/(h-d) = 1/2, 
whereas the location d varies from d = 0 to d = b/2. The 
location of the heat input area is then fixed at the centre of  
the plate while the geometric parameter c/(h - d )  varies from 
1/8 to 8. Figure l(b) illustrates three typical dimensions 
and locations of  the heating zone in the calculation. The 
calculated pressure fields are illustrated by contours of pres- 

(11 a) sure difference AP = P -  P~in, where Pm~n is the minimal pres- 
sure in each case. Figure 2 shows the computational results 
for the arrangement illustrated in Fig. l(b). It can be seen 

(1 lb) that the lowest pressure is always at the inner part of the heat 
input area whereas the highest pressure is always at the region 
the most distant from the heating area. The velocity fields 
[Figs. 2(a2), (b2) and (c2)] illustrate clearly that the flow 
velocity increases from the high pressure corner to the heat- 
ing zone, and decreases after reaching the heater. This shows 
that the fluid is condensed from the cold area and evaporated 
into the heating area. Figure 2(bl) also shows that maximum 
pressure drop across the plate becomes APmax = 0.48, which 

(12a) is smaller compared to the pressure drop APmax = 0.68 when 
the heater is placed at the side, shown in Fig. 2(al). For 
different heater positions but the same heater geometry, as 

(12b) illustrated in Figs. 1(i) and l(ii), APmax is computed and 
plotted against d in Fig. 3. It shows that the maximum 
pressure difference has a minimal value at d = b/4 = 0.25. 
At this position it will produce a minimal pressure drop for 
the same flow rate (note that the condensation area is fixed 
and the condensation rate is a constant). In other words, 

(12c) when the heat source is placed at the middle of  the plate, the 
capillary heat transport limit will be at its maximum. This 
conclusion is consistent with the results obtained by the 
approximate method based on the effective length of heat 
pipe [4]. 

The heater is now placed at the middle of the plate and 
stretched along y-direction with its area being fixed at ab/8 
and the geometric parameter c/(h-d) varied from 1/8 to 8. 
Figure 2(cl) shows that the maximum pressure drop is 
reduced further in this case. APma x is computed for different 
ratio c/(h-d) and the results are plotted as the solid line in 
Fig. 4. It is seen that, in general, the bigger value of  c/(h- d) 
will give less pressure drop. This is probably due to the longer 
circumference of  the heating area, across which the flow 
velocity will be smaller for the same total mass flow, as shown 

(13) by Fig. 2(c2), and therefore require less driving pressure. 
The pressure drop calculated by the analytical method is 

finally compared with the estimated results based on the 
effective length. The effective length method has been applied 
by Schmalhofer and Faghri [3] to a blocked-heated heat pipe, 
and by Sun et al. [4] to a partially heated flat plate heat pipe, 
in which the heat flow rates were assumed to be uniform 
across both the condensation sections and the evaporation 
sections. The same technique is adopted in the present case, 
in which the rectangle heater is located at the middle of  the 
y-dimension of  the heat pipe, such as the situation illustrated 
by Figs. 1 (ii) and 1 (iii). The results by Sun et al. [4] have 
been modified here to take into account the situation that 
the heater is surrounded by the condensation region rather 



1328 Technical Note 

1 . 0  . . . . .  [ . . . . .  i . . . .  i . . . . .  i . . . . . . . .  i . . i . . , . . • i . . • 

°... I liiiiiii::: • ~ I I *¢ 

L[  g~.C,q'~-,2-~2-~--~-~-~-, - ~ . . . . .  

[; : ~ ~ - . ~ - ~ - . Y -  : : : " 
, , , ~ , , ° . - - . ' . x . ~ , ~ , i ~ . . : , : ~  : :  . ~ 7 . ' ~ .  T - . - - . ' * :  T" , - .  *. . . O 0  

1 . 0 ,  . . , . . . .  
o p o o 0 . 4 8  

0.8 

0 . 6  f O ~ :  ~ 
y/b 

0 . 4  

0.2 

(b~) 

O 0  ' ~ . . . .  

" ~  ~ . . . . . . . .  tb2Xi 

• 

I ~ l J t e l I / , I / t . ' ' ' ' ' '  

o o - ,  . . . . . . . . . . . . . . . . . . . . .  
0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 . 0 0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 . 0  

~a ~a 

Fig. 2. Pressure contours o fAP = P -  P m i n  and the flow velocity fields corresponding to three configurations 
shown in Fig. 1 (b). The dashed lines indicate the heating zone. 

than being separated from it by an insulation section. The 
effective length Le in the present case is obtained as 

Le 1 f a  

1 1 S R  1 S J[7])(Jill) 
+ 1 S R  S 

~ ( X / I ~ - I -  ~ )  } . (16) 

The effective length is associated with the pressure drop by 
[1, 3] 

#m Le 
Ap =~ppX T (17) 

where rnis  the total mass flow rate in the wick structure. In 
the present case, 

rh = ~ c ( h - d )  = ~ + q c ( h - d ) .  (18) 

By substituting equation (18) into equation (17) and taking 
= #o~ +/Kp,  P = Ap/abfl ,  the estimated maximum pressure 

drop is obtained by 

qS  Lo 
Aemax =Zb-×~ 
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heater is placed at the centre of  the plate similar to Fig. 1 (iii). 

"= ' {; J[=A 
ab 2[1--S/(ab)] 

SR 1 S 

1 S R  

Equation (19) was evaluated for the same dimensions of  the 
heater and the heat pipe as in the previous calculations, i.e. 
a = b, S = ab/8, and the results are presented in Fig. 4 by 
the dotted line. It is seen that  the estimated pressure drops 
based on the effective length method are generally close to the 
calculated values, especially at points A and B, the estimated 
pressure drops are equal to the calculated values. At the 
point A, R = c / ( h -  d) = 1/8, c/a = 1/8 and ( h - d ) / b  = 1, i.e. 
the heater is a strip completely across the heat pipe in the y- 
dimension. At the point B, R = el(h--d) = 8, c/a = 1 and 
(h - d)/b = 1/8, i.e. the heater is a strip completely across the 

heat pipe in the x-dimension. In both cases the heat flows 
are actually 1D and uniform as assumed by the method,  so 
that the estimated results are the same as the exact solutions 
at these two points. The results indicate that the present 
analytical solution can give reliable results on the max imum 
pressure drop of the working fluid in the wick structure of  a 
flat plate heat pipe with localized heating condition. 

4 .  C O N C L U D I N G  R E M A R K S  

An analytical study has been conducted to examine the 
effect of  a localized heating on the flow of liquid in a fiat 
plate heat pipe. The pressure and the flow velocity are studied 
in detail with different locations and the geometrical con- 
figurations of  the heater. The results show that, in terms of 
the minimal pressure drop across the wick structure, the 
optimal location is at the geometric centre of  the heat pipe 
surface and the optimal geometry, for a constant  heat input, 
is of  the longest circumferential length of the heater. The 
technique presented here demonstrates  a better way to deal 
with discretely distributed heat sources. This method,  in prin- 
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ciple, can be used to calculate the pressure filed for multiple 
heaters which are arbitrarily placed on a heat pipe. 
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